Biophysical Determinants for Cellular Uptake of Hydrocarbon-Stapled Peptide Helices

نویسندگان

  • Gregory H. Bird
  • Emanuele Mazzola
  • Kwadwo Opoku-Nsiah
  • Margaret A. Lammert
  • Marina Godes
  • Donna S. Neuberg
  • Loren D. Walensky
چکیده

Hydrocarbon-stapled peptides are a class of bioactive alpha-helical ligands developed to dissect and target protein interactions. While there is consensus that stapled peptides can be effective chemical tools for investigating protein regulation, their broader utility for therapeutic modulation of intracellular interactions remains an active area of study. In particular, the design principles for generating cell-permeable stapled peptides are empiric, yet consistent intracellular access is essential to in vivo application. Here, we used an unbiased statistical approach to determine which biophysical parameters dictate the uptake of stapled-peptide libraries. We found that staple placement at the amphipathic boundary combined with optimal hydrophobic and helical content are the key drivers of cellular uptake, whereas excess hydrophobicity and positive charge at isolated amino acid positions can trigger membrane lysis at elevated peptide dosing. Our results provide a design roadmap for maximizing the potential to generate cell-permeable stapled peptides with on-mechanism cellular activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane permeability of hydrocarbon-cross-linked peptides.

Schafmeister, Po, and Verdine (another study) introduced a method using a hydrocarbon linker (staple) to stabilize a peptide in a helical configuration. One intended goal of this scheme is to facilitate the delivery of peptide drugs into target cells. Here, we investigate whether stapled peptides are intrinsically membrane permeable, by performing a case study on a stapled 12-mer peptide named ...

متن کامل

Assessing the Efficacy of Mdm2/Mdm4-Inhibiting Stapled Peptides Using Cellular Thermal Shift Assays

Previous publications on stapled peptide inhibitors against Mdm2/Mdm4-p53 interactions have established that this new class of drugs have the potential to be easily optimised to attain high binding affinity and specificity, but the mechanisms controlling their cellular uptake and target engagement remain elusive and controversial. To aid in understanding the rules of peptide and staple design, ...

متن کامل

Structure of a Stapled Peptide Antagonist Bound to Nutlin-Resistant Mdm2

As key negative regulator of the p53 tumour suppressor, Mdm2 is an attractive therapeutic target. Small molecules such as Nutlin have been developed to antagonise Mdm2, resulting in p53-dependent death of tumour cells. We have recently described a mutation in Mdm2 (M62A), which precludes binding of Nutlin, but not p53. This Nutlin-resistant variant is not, however, refractory to binding and inh...

متن کامل

Hydrocarbon Stapled Antimicrobial Peptides

Antimicrobial peptides are promising candidates for anti-infective pharmaceuticals. Unfortunately, because of their low proteolytic and chemical stability, their usage is generally narrowed down to topical formulations. Until now, numerous approaches to increase peptide stability have been proposed. One of them, peptide hydrocarbon stapling, a modification based on stabilizing peptide secondary...

متن کامل

Investigating peptide sequence variations for 'double-click' stapled p53 peptides.

Stapling peptides for inhibiting the p53/MDM2 interaction is a promising strategy for developing anti-cancer therapeutic leads. We evaluate double-click stapled peptides formed from p53-based diazidopeptides with different staple positions and azido amino acid side-chain lengths, determining the impact of these variations on MDM2 binding and cellular activity. We also demonstrate a K24R mutatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016